题上,欧叶选择数论+椭圆曲线+……相结合的方式,随大流了。
如果采用软硬结合的主流研究手段,那么水平有限的沈教授对于bsd猜想还是做了点儿间接性贡献的。
在bsd猜想这个问题上,r越大,数学家们希望看到的有理点就越多,r是曲线的秩,是这个问题里很重要的一个参数。
虽然全世界的数学家们近年来在椭圆曲线理论的研究上取得了显著的进展,但秩仍是个迷。
甚至于秩该如何计算,或者秩是不是可以无穷大这种基本问题都没解决。
沈奇在《数论史》里写到:“……为了便于你更好的理解本章所阐述的bsd猜想,建议你本人所著的另一本书《黎曼猜想证明的前前后后》。”
沈奇这么写的主要目的,是为了让《黎曼猜想证明的前前后后》的销量多一点。
当然了,读者们如果理解了黎曼猜想,对于bsd猜想的解读也会有一定帮助。
读者们只需了解一点点黎曼zeta函数的知识,就能知道椭圆曲线里的hasse-weil函数这种形式其实就是欧拉乘积。
沈奇对于bsd猜想真正的贡献,来自于一篇他未曾发表的论文稿。
在这份论文稿里,